Вижу на сайте присутствуют родители, у которых дети ходят в школу. Хочу поделиться своим опытом развития в детях интереса к математике и формирования у них логического мышления на всю жизнь. Ведь, если не будешь разбираться в математике, то ни в одной науке потом не разберешься. А можно ли полагаться только на шкоу и никак не помогать своим детям раскрывать новые возможности? Это каждый родитель должен решить сам.
Могу рассказать только про Москву, так как искал своим детям здесь. Отправной точкой служит сайт: www.mccme.ru. С него идут ссылки на Малый Мехмат МГУ, где ходить на занятия можно со второго класса. Начинаются кружки в сентябре, не проспите начало, так как затем поезд набирает скорость и ребенку будет догнать сверстников трудно. Начиная со старших классов, возможно заочное и удаленное обучение детям из друих городов. Из литературы могу порекомендовать книги А.В. Спивака (1001 задача) и Г. Перельмана (все). Купить книги можно в магазине самого центра mccme.ru в помещении рядом с Арбатом, стоимость там минимальна, а выбор максимальный.
Еще есть такая интересная вещь как летние школы на берегу моря. В 2011 году они состоятся на/в Украине в июле, августе, куда родители едут вместе с детьми, арендуется школа, дети там занимаются (приезжают преподаватели), ну и про отдых не забывают. В летнюю школу лучше ехать хотя бы после года занятий на кружках.
В заключение публикую фрагмент свежего интервью Г.Перельмана (источник Комсомолка, журналистские комменты обрезал), если найду полное, опубликую здесь:
Григорий Яковлевич, еще школьником вы представляли СССР на математической олимпиаде в Будапеште. И взяли золотую медаль…
- Готовясь к олимпиаде, мы пытались решать задачи, где непременным условием было умение абстрактно мыслить. В этом отвлечении от математической логики и был главный смысл ежедневных тренировок. Чтобы найти правильное решение, необходимо было представить себе «кусочек мира».
- Не сложновато для школьников?
- Если говорить об условных и безусловных рефлексах, младенец с рождения познает мир. Если можно тренировать руки и ноги, то почему нельзя тренировать мозг?
- А не припомните ли какую-нибудь задачу той поры, казавшуюся неразрешимой?
- Неразрешимой… Пожалуй, нет. Труднорешаемой. Так точнее. Помните библейскую легенду о том, как Иисус Христос ходил по воде, аки посуху. Так вот мне нужно было рассчитать, с какой скоростью он должен был двигаться по водам, чтобы не провалиться.
- Вычисления оказались верными?
- Ну если легенда до сих пор существует, значит, и я не ошибся. Здесь нет никакой особой загадки. Благодаря нашим учителям мы уже достаточно хорошо изучили топологию - науку, позволяющую понять свойства пространства и оперировать формулами, понимая их прикладное значение, что помогает добиваться быстрых и точных результатов. Кстати, я тогда не считал победу на олимпиаде каким-то знаковым событием - это был всего лишь один из многих этапов познания в любимой науке.
- А вы знаете, что мне пришлось поломать голову, выбирая профессию?
- Как же так?
- Я имел право без экзаменов поступать в любое учебное заведение Советского Союза. Вот и колебался между мехматом и консерваторией. Выбрал математику… Мне сейчас очень интересно вспоминать студенческие годы. Мы так много успевали тогда… Процесс познания захватывал… Мы забывали о днях недели и времени года.
- В двадцать с небольшим лет вы сказали новое слово в науке...
- Никаких слов я не говорил… Просто продолжал исследовать проблемы изучения свойств трехмерного пространства Вселенной. Это очень интересно.
- Пытались объять необъятное?
- Совершенно верно… Только ведь любое необъятное тоже объятно. Диссертацию писал под руководством академика Александрова. Тема была несложной: «Седловидные поверхности в евклидовой геометрии». Можете представить себе в бесконечности равновеликие и неравномерно удаленные друг от друга поверхности? Нам нужно измерить «впадины» между ними.
- Это теория?
- Это уже практика. По какой орбите полетит космический корабль к созвездию Псов? Какие препятствия встретит на своем пути… Хотите еще проще? Стоит ли косить сено между тремя холмами? Сколько людей и машин для этого надо? Министерство сельского хозяйства, оказывается, ни к чему. Есть формула. Пользуйся. Считай. И никакие кризисы тебе не страшны.
- А не схоластика ли это?
- Это колесо, топор, молот, наковальня - все что угодно, но только не схоластика. Давайте разберемся. Особенности современной математики заключаются в том, что она изучает искусственно изобретенные объекты. Нет в природе многомерных пространств, нет групп, полей и колец, свойства которых усиленно изучают математики. И если в технике постоянно создаются новые аппараты, всевозможные устройства, то и в математике создаются их аналоги - логические приемы для аналитиков в любой области науки. И всякая математическая теория, если она строгая, рано или поздно находит применение. К примеру, многие поколения математиков и философов пытались аксиоматизировать философию. В результате этих попыток была создана теория булевых функций, названных по имени ирландского математика и философа Джорджа Буля. Эта теория стала ядром кибернетики и общей теории управления, которые вместе с достижениями других наук привели к созданию компьютеров, современных морских, воздушных и космических кораблей. Таких примеров история математики
дает десятки.
- Значит, каждая ваша теоретическая разработка имеет прикладное значение?
- Безусловно. Для чего столько лет нужно было биться над доказательством гипотезы Пуанкаре? Попросту суть ее можно изложить так: если трехмерная поверхность в чем-то похожа на сферу, то ее можно расправить в сферу. «Формулой Вселенной» утверждение Пуанкаре называют из-за его важности в изучении сложных физических процессов в теории мироздания и из-за того, что оно дает ответ на вопрос о форме Вселенной. Сыграет это доказательство большую роль в развитии нанотехнологий.
- Значит, «бодрые» «жизнеутверждающие» доклады «пионеров» этой отрасли…
- Абсолютная чепуха и бессмыслица. Попытка построить дом на песке… Я научился вычислять пустоты, вместе с моими коллегами мы познаем механизмы заполнения социальных и экономических «пустот». Пустоты есть везде. Их можно вычислять, и это дает большие возможности… Я знаю, как управлять Вселенной. И скажите - зачем же мне бежать за миллионом?!
Могу рассказать только про Москву, так как искал своим детям здесь. Отправной точкой служит сайт: www.mccme.ru. С него идут ссылки на Малый Мехмат МГУ, где ходить на занятия можно со второго класса. Начинаются кружки в сентябре, не проспите начало, так как затем поезд набирает скорость и ребенку будет догнать сверстников трудно. Начиная со старших классов, возможно заочное и удаленное обучение детям из друих городов. Из литературы могу порекомендовать книги А.В. Спивака (1001 задача) и Г. Перельмана (все). Купить книги можно в магазине самого центра mccme.ru в помещении рядом с Арбатом, стоимость там минимальна, а выбор максимальный.
Еще есть такая интересная вещь как летние школы на берегу моря. В 2011 году они состоятся на/в Украине в июле, августе, куда родители едут вместе с детьми, арендуется школа, дети там занимаются (приезжают преподаватели), ну и про отдых не забывают. В летнюю школу лучше ехать хотя бы после года занятий на кружках.
В заключение публикую фрагмент свежего интервью Г.Перельмана (источник Комсомолка, журналистские комменты обрезал), если найду полное, опубликую здесь:
Григорий Яковлевич, еще школьником вы представляли СССР на математической олимпиаде в Будапеште. И взяли золотую медаль…
- Готовясь к олимпиаде, мы пытались решать задачи, где непременным условием было умение абстрактно мыслить. В этом отвлечении от математической логики и был главный смысл ежедневных тренировок. Чтобы найти правильное решение, необходимо было представить себе «кусочек мира».
- Не сложновато для школьников?
- Если говорить об условных и безусловных рефлексах, младенец с рождения познает мир. Если можно тренировать руки и ноги, то почему нельзя тренировать мозг?
- А не припомните ли какую-нибудь задачу той поры, казавшуюся неразрешимой?
- Неразрешимой… Пожалуй, нет. Труднорешаемой. Так точнее. Помните библейскую легенду о том, как Иисус Христос ходил по воде, аки посуху. Так вот мне нужно было рассчитать, с какой скоростью он должен был двигаться по водам, чтобы не провалиться.
- Вычисления оказались верными?
- Ну если легенда до сих пор существует, значит, и я не ошибся. Здесь нет никакой особой загадки. Благодаря нашим учителям мы уже достаточно хорошо изучили топологию - науку, позволяющую понять свойства пространства и оперировать формулами, понимая их прикладное значение, что помогает добиваться быстрых и точных результатов. Кстати, я тогда не считал победу на олимпиаде каким-то знаковым событием - это был всего лишь один из многих этапов познания в любимой науке.
- А вы знаете, что мне пришлось поломать голову, выбирая профессию?
- Как же так?
- Я имел право без экзаменов поступать в любое учебное заведение Советского Союза. Вот и колебался между мехматом и консерваторией. Выбрал математику… Мне сейчас очень интересно вспоминать студенческие годы. Мы так много успевали тогда… Процесс познания захватывал… Мы забывали о днях недели и времени года.
- В двадцать с небольшим лет вы сказали новое слово в науке...
- Никаких слов я не говорил… Просто продолжал исследовать проблемы изучения свойств трехмерного пространства Вселенной. Это очень интересно.
- Пытались объять необъятное?
- Совершенно верно… Только ведь любое необъятное тоже объятно. Диссертацию писал под руководством академика Александрова. Тема была несложной: «Седловидные поверхности в евклидовой геометрии». Можете представить себе в бесконечности равновеликие и неравномерно удаленные друг от друга поверхности? Нам нужно измерить «впадины» между ними.
- Это теория?
- Это уже практика. По какой орбите полетит космический корабль к созвездию Псов? Какие препятствия встретит на своем пути… Хотите еще проще? Стоит ли косить сено между тремя холмами? Сколько людей и машин для этого надо? Министерство сельского хозяйства, оказывается, ни к чему. Есть формула. Пользуйся. Считай. И никакие кризисы тебе не страшны.
- А не схоластика ли это?
- Это колесо, топор, молот, наковальня - все что угодно, но только не схоластика. Давайте разберемся. Особенности современной математики заключаются в том, что она изучает искусственно изобретенные объекты. Нет в природе многомерных пространств, нет групп, полей и колец, свойства которых усиленно изучают математики. И если в технике постоянно создаются новые аппараты, всевозможные устройства, то и в математике создаются их аналоги - логические приемы для аналитиков в любой области науки. И всякая математическая теория, если она строгая, рано или поздно находит применение. К примеру, многие поколения математиков и философов пытались аксиоматизировать философию. В результате этих попыток была создана теория булевых функций, названных по имени ирландского математика и философа Джорджа Буля. Эта теория стала ядром кибернетики и общей теории управления, которые вместе с достижениями других наук привели к созданию компьютеров, современных морских, воздушных и космических кораблей. Таких примеров история математики
дает десятки.
- Значит, каждая ваша теоретическая разработка имеет прикладное значение?
- Безусловно. Для чего столько лет нужно было биться над доказательством гипотезы Пуанкаре? Попросту суть ее можно изложить так: если трехмерная поверхность в чем-то похожа на сферу, то ее можно расправить в сферу. «Формулой Вселенной» утверждение Пуанкаре называют из-за его важности в изучении сложных физических процессов в теории мироздания и из-за того, что оно дает ответ на вопрос о форме Вселенной. Сыграет это доказательство большую роль в развитии нанотехнологий.
- Значит, «бодрые» «жизнеутверждающие» доклады «пионеров» этой отрасли…
- Абсолютная чепуха и бессмыслица. Попытка построить дом на песке… Я научился вычислять пустоты, вместе с моими коллегами мы познаем механизмы заполнения социальных и экономических «пустот». Пустоты есть везде. Их можно вычислять, и это дает большие возможности… Я знаю, как управлять Вселенной. И скажите - зачем же мне бежать за миллионом?!